Answer on Question \#48177 - Math - Matrix | Tensor Analysis

Question.

Solve the following system of equations $\left\{\begin{array}{c}3 x+2 y+4 z=7 \\ 2 x+y+z=7 \\ x+3 y+5 z=2\end{array}\right.$ using Gauss elimination with pivoting. Store the multipliers and also write the pivoting vector.

Solution.

The extended matrix has the form: $\left(\begin{array}{lll|l}3 & 2 & 4 & \mid \\ 2 & 1 & 1 & 7 \\ 1 & 3 & 5 & 7 \\ 2\end{array}\right)$. The pivoting vector is $\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$. Use the next row operation: $3 R_{2}-2 R_{1} \rightarrow R_{2}$ and $3 R_{3}-R_{1} \rightarrow R_{3}$. The matrix after the first pivot looks like this: $\left(\begin{array}{ccccc}3 & 2 & 4 & \mid c & 7 \\ 0 & -1 & -5 & \mid c & 7 \\ 0 & 7 & 11 & \mid & -1\end{array}\right)$. Now the pivoting vector is $\binom{-1}{7}$. Multiply the second row by 7 and add it to the third row. We shall have: $\left(\begin{array}{ccc|c}3 & 2 & 4 & 7 \\ 0 & -1 & -5 & 7 \\ 0 & 0 & -24 & 48\end{array}\right)$. So $-24 z=48 \Leftrightarrow z=$ $-2,-y-5 z=7 \Leftrightarrow y=-5 z-7=3,3 x+2 y+4 z=7 \Leftrightarrow$ $\Leftrightarrow 3 x=7-2 y-4 z=9 \Leftrightarrow x=3$.

Answer. $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}3 \\ 3 \\ -2\end{array}\right)$.

