Answer on Question \#48111 - Math - Differential Calculus | Equations

Find one set of values of the numbers a and b, such that the function $y=e^{a x}+b \ln (x)$ is a solution of the differential equations given below.
a. $y^{\prime \prime}-a y^{\prime}=0$
b. $y^{\prime}+y-\left(\frac{b}{x}\right)=0$

Solution

$$
y=e^{a x}+b \ln (x) ; y^{\prime}=a e^{a x}+\left(\frac{b}{x}\right) ; y^{\prime \prime}=\left(a^{2}\right) e^{a x}-\left(\frac{b}{x^{2}}\right)
$$

a. $y^{\prime \prime}-a y^{\prime}=0$

$$
\begin{gathered}
\left(a^{2}\right) e^{a x}-\left(\frac{b}{x^{2}}\right)-(a)\left(a e^{a x}+\left(\frac{b}{x}\right)\right)=0 \\
\left(a^{2}\right) e^{a x}-\left(\frac{b}{x^{2}}\right)-\left(a^{2}\right) e^{a x}-\left(\frac{a b}{x}\right)=0 \\
\left(\frac{b}{x}\right)\left(-\frac{1}{x}-a\right)=0
\end{gathered}
$$

Note that when $b=0$, the above equation obviously holds true regardless of value of x (unless x is also zero). a can be any value, so we can also set it to be 0 .

Thus, we have: $a=0$ and $b=0$.
b. $\quad y^{\prime}+y-\left(\frac{b}{x}\right)=0$

$$
\begin{gathered}
a e^{a x}+\left(\frac{b}{x}\right)+e^{a x}+b \ln (x)-\left(\frac{b}{x}\right)=0 \\
a e^{a x}+e^{a x}+b \ln (x)=0
\end{gathered}
$$

Once again, we can let $b=0$.
However, if we let $a=0, e^{a x}$ will be equal to 1 , which means that the equation will not be balanced.
Thus, we should let $a=-1$ instead, so that we will have $-e^{-x}+e^{-x}$, which will result in 0 .
Hence, $a=-1, b=0$.

