Answer on Question #48103 – Math – Calculus

Sketch one graph of a single function f that satisfies all of the conditions below:

a. domain is $(0, \infty)$; b. $\lim_{x \to 0_+} f(x) = \infty$; c. $\lim_{x \to \infty} f(x) = 2$; d. f'(x) < 0 on the interval (0,3); e. f'(x) > 0 on the interval $(3, \infty)$; f. f'(3) = 0; g. f''(x) > 0 on the interval (0,6)h. f''(x) < 0 on the interval $(6, \infty)$.

Solution.

By a, domain of function f(x) is $(0, \infty)$, therefore x > 0.

By d, $\forall x \in (0,3)$: $f'(x) < 0 \implies f$ decreases on (0,3). By b, $\lim_{x \to 0_+} f(x) = +\infty$.

By c and e,

$$\begin{cases} \lim_{x \to \infty} f(x) = 2\\ \forall x \in (3, +\infty): f'(x) > 0 \end{cases} \implies \forall x \in (3, \infty): f(x) < 2; f \text{ increases on } (3, \infty). \end{cases}$$

Take into account d, e, f, so f'(x) < 0 on (0,3); f'(x) > 0 on $(3,\infty)$; $f'(3) = 0 \Rightarrow x = 3$ is a point of local minimum (in this problem it will be global minimum). Note that by g and h, f''(x) > 0 on (0,6), f''(x) < 0 on $(6,\infty) \Rightarrow$ the graph of function is convex downward on (0,6), the graph of function is convex upward on $(6,\infty)$.

So, the graph of f(x) can be like this:

www.AssignmentExpert.com