Answer on Question\# \#47877 - Mathematics - Differential Calculus | Equations

Question:

Find the solution of the equation

$$
\begin{equation*}
\operatorname{div}(\operatorname{grad} z)(x, y)=e^{-x} \cos y \tag{1}
\end{equation*}
$$

which tends to zero as x tends to infinity.

Solution:

Let us rewrite equation (1) by means of the Laplace operator:

$$
\begin{equation*}
\operatorname{div}(\operatorname{grad} \mathrm{z})(\mathrm{x}, \mathrm{y})=(\nabla \cdot \nabla \mathrm{z}(\mathrm{x}, \mathrm{y}))=\nabla^{2} \mathrm{z}(\mathrm{x}, \mathrm{y})=\Delta \mathrm{z}(\mathrm{x}, \mathrm{y})=\frac{\partial^{2} \mathrm{z}(\mathrm{x}, \mathrm{y})}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{z}(\mathrm{x}, \mathrm{y})}{\partial \mathrm{y}^{2}}=\mathrm{e}^{-\mathrm{x}} \cos y . \tag{1a}
\end{equation*}
$$

Consider the right side of this equation. As the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{e}^{-\mathrm{x}} \operatorname{cosy}$ is a periodic in y-direction, then we can search the solution in the form

$$
\begin{equation*}
z(\mathrm{x}, \mathrm{y})=\mathrm{f}(\mathrm{x}) \cos \mathrm{y} \tag{2}
\end{equation*}
$$

Substituting (2) in the equation (1a), we have

$$
\begin{gather*}
\frac{\partial^{2} \mathrm{z}(\mathrm{x}, \mathrm{y})}{\partial \mathrm{x}^{2}}=\mathrm{f}^{\prime \prime} \cos y, \quad \frac{\partial^{2} \mathrm{z}(\mathrm{x}, \mathrm{y})}{\partial y^{2}}=-\mathrm{f} \cos \mathrm{y} \\
\mathrm{f} \text { "cosy }-\mathrm{f} \cos y=e^{-x} \cos y \\
f^{\prime \prime}-f=e^{-x} \tag{3}
\end{gather*}
$$

Therefore we obtain the second-order linear ordinary differential equation. The general solution of this equation is

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{1} \mathrm{e}^{-\mathrm{x}}-\mathrm{x} \frac{\mathrm{e}^{-\mathrm{x}}}{2} \tag{4}
\end{equation*}
$$

By definition $f(y)=c o s y$ is the bounded function. So, from the problem condition it follows that

$$
\begin{equation*}
z(x, y)_{x \rightarrow \infty} \rightarrow 0 \Rightarrow f(x)_{x \rightarrow \infty} \rightarrow 0 \tag{5}
\end{equation*}
$$

Now, using (5) and (4) we receive $\left(\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{1} \mathrm{e}^{-\mathrm{x}}-\mathrm{x} \frac{\mathrm{e}^{-\mathrm{x}}}{2}\right)_{x \rightarrow \infty} \rightarrow 0$
As we see, the limit condition holds, if $C_{1}=0, C_{2}=1$ (note that $\lim _{x \rightarrow \infty}\left(e^{-x}-x \frac{e^{-x}}{2}\right)=0$). Thus, the solution of equation (1) is

$$
\begin{equation*}
z(x, y)=\left(\mathrm{e}^{-\mathrm{x}}-\mathrm{x} \frac{\mathrm{e}^{-\mathrm{x}}}{2}\right) \cos y . \tag{6}
\end{equation*}
$$

Answer: $z(x, y)=\left(\mathrm{e}^{-\mathrm{x}}-\mathrm{x} \frac{\mathrm{e}^{-\mathrm{x}}}{2}\right) \cos y$.

