Answer on Question# #47877 – Mathematics – Differential Calculus | Equations

Question:

Find the solution of the equation

$$div(grad z)(x, y) = e^{-x} cosy,$$
(1)

which tends to zero as x tends to infinity.

Solution:

Let us rewrite equation (1) by means of the Laplace operator:

$$\operatorname{div}(\operatorname{grad} z)(x, y) = \left(\nabla \cdot \nabla z(x, y)\right) = \nabla^2 z(x, y) = \Delta z(x, y) = \frac{\partial^2 z(x, y)}{\partial x^2} + \frac{\partial^2 z(x, y)}{\partial y^2} = e^{-x} \cos y.$$
(1a)

Consider the right side of this equation. As the function $f(x, y) = e^{-x} \cos y$ is a periodic in *y*-direction, then we can search the solution in the form

$$z(\mathbf{x}, \mathbf{y}) = \mathbf{f}(\mathbf{x}) \cos \mathbf{y},\tag{2}$$

Substituting (2) in the equation (1a), we have

$$\frac{\partial^2 z(x, y)}{\partial x^2} = f'' \cos y, \quad \frac{\partial^2 z(x, y)}{\partial y^2} = -f \cos y,$$

$$f'' \cos y - f \cos y = e^{-x} \cos y,$$

$$f'' - f = e^{-x}.$$
 (3)

Therefore we obtain the second-order linear ordinary differential equation. The general solution of this equation is

$$f(x) = C_1 e^x + C_1 e^{-x} - x \frac{e^{-x}}{2},$$
(4)

By definition f(y)=cosy is the bounded function. So, from the problem condition it follows that

$$z(x, y)_{x \to \infty} \to 0 \Rightarrow f(x)_{x \to \infty} \to 0.$$
(5)

Now, using (5) and (4) we receive $(C_1e^x + C_1e^{-x} - x\frac{e^{-x}}{2})_{x\to\infty} \to 0$

As we see, the limit condition holds, if $C_1 = 0$, $C_2 = 1$ (note that $\lim_{x \to \infty} \left(e^{-x} - x \frac{e^{-x}}{2}\right) = 0$). Thus, the solution of equation (1) is

$$z(x,y) = \left(e^{-x} - x\frac{e^{-x}}{2}\right)cosy.$$
(6)

Answer: $z(x, y) = \left(e^{-x} - x\frac{e^{-x}}{2}\right)cosy.$

www.AssignmentExpert.com