Answer on Question \#47869 - Math - Calculus

Question:

Gravel is being dumped from a conveyor belt at a rate of 30 ft ^ $3 / \mathrm{min}$, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. how fast is the height of the pile increasing when the pile is 10 ft high?

Solution:

Volume of the cone equals:

$$
V=\frac{1}{3} \pi\left(\frac{d}{2}\right)^{2} h=\frac{1}{12} \pi h^{3}
$$

where d is base diameter, h is height.
Rate of increasing equals:

$$
\frac{d V}{d t}=\frac{1}{12} \pi 3 h^{2} \frac{d h}{d t}=\frac{1}{4} \pi h^{2} \frac{d h}{d t}
$$

Therefore:

$$
\frac{d h}{d t}=\frac{\frac{d V}{d t}}{\frac{1}{12} \pi 3 h^{2}}=\frac{30 \frac{f t^{3}}{\min } 4}{\pi 100 \mathrm{ft}^{2}}=0.382 \frac{\mathrm{ft}}{\mathrm{~min}}
$$

Answer: $0.382 \frac{\mathrm{ft}}{\mathrm{min}}$

