Answer on Question \#47588 - Math - Calculus

The diagram shows part of the curve $y=2-18 /(2 x+3)$, which crosses the x-axis at A and the y-axis at B. The normal to the curve at A crosses the y-axis at C.
(i) Show that the equation of the line $A C$ is $9 x+4 y=27$.
(ii) Find the length of $B C$.

Solution:

(i) The diagram shows part of the curve $y=2-18 /(2 x+3)$, which crosses the x-axis at A and the y axis at B. Find the points A and B. For point A we have, $y=0$. Hence

$$
2-\frac{18}{2 x+3}=0 \Rightarrow 2 x+3=9 \Rightarrow 2 x=6 \Rightarrow x=3
$$

For point B we have, $\mathrm{x}=0$ and

$$
\mathrm{y}=2-\frac{18}{2 * 0+3} \Rightarrow \mathbf{y}=-\mathbf{4}
$$

We found coordinates $A(3 ; 0)$ and $B(0 ;-4)$.
Next, the equation of the normal line to $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at $\left(\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{y}_{\mathbf{0}}\right)$ is:

$$
\mathrm{y}=y_{0}-\frac{1}{f^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right) .
$$

For

$$
y=2-\frac{18}{2 x+3}
$$

we have

$$
y^{\prime}=f^{\prime}(x)=\frac{36}{(2 x+3)^{2}}
$$

Therefore the equation of the normal line to $y=2-\frac{18}{2 x+3}$ at point $A(3 ; 0)$ is

$$
y=0-\frac{(2 * 3+3)^{2}}{36}(x-3)=-\frac{9}{4}(x-3) .
$$

or the same $4 y+9 x=27$.
We have shown that the equation of the line $A C$ is $\mathbf{4 y}+\mathbf{9 x}=\mathbf{2 7}$.
(ii) Next, we find coordinates of point C. The line AC crosses the y-axis at C, hence $x=0$ and

$$
4 y+9 * 0=27 \Rightarrow y=\frac{27}{4}
$$

Point C has coordinates ($0, \frac{27}{4}$). The length of $B C$ is equal distance between points B and C :

$$
|B C|=\sqrt{(0-0)^{2}+\left(-4-\frac{27}{4}\right)^{2}}=\left|-4-\frac{27}{4}\right|=\frac{43}{4}=10,75 .
$$

The length of BC is equal $\mathbf{1 0 . 7 5}$.

