Answer on Question \#47534 - Math - Geometry
How to prove the volume formula of con is $1 / 3 \times \pi \times r^{\wedge} 2 \times h$; without using integration?

Solution.
Suppose we take a slice of the pyramid with the cone inside, from some way up the pyramid. This will look like a square with a circle fitting inside. Radius of the cone at this point, will be x.

The area of the circle is πx^{2}
The area of the square is $2 x \times 2 x=4 x^{2}$
The ratio of the circle to the square is $\frac{\pi}{4}$.
The same is true for every slice we take: the area of the circle is $\frac{\pi}{4}$ of the area of the square.

So, the volume of the cone will be $\frac{\pi}{4}$ the volume of the pyramid.
The pyramid's volume is $\frac{4 r^{2} h}{3}$.
So the cone's volume is $\frac{4 r^{2} h}{3} * \frac{\pi}{4}=\frac{\pi r^{2} h}{3}$.

