Answer on Question \#47438 - Math - Calculus

1. Let $A=\{1,2,3,4\}$ and $B=\{a, b, c\}$.
(i) Write down a function from A to B
(ii) Write down a different function from A to B
(iii) Write down a relation from A to B which is not a function
(iv) How many functions are there from A to B ?
2. Determine whether each of the statements that follow are true or false. If the statement is true, give a reason. If it is false, give a counterexample (i.e. a function for which the statement is false)
(i) The domain of every function is a subset of R.
(ii) If $f: R=>R$ is a function and $x E R$ then $f(2 x)=2 f(x)$
(iii) If $h: A=>B$ is a function and $a, b E A$ then $h(a)=h(b)$ implies that $a=b$

Solution.

1. A relation is a set of ordered pairs (x, y).

A function is a relation that does not contain two pairs with the same first component.
(i) $\{(1, a),(2, b),(3, c),(4, a)\}$
(ii) $\{(1, a),(2, a),(3, a),(4, a)\}$
(iii) $\{(1, a),(1, b),(2, b),(3, c),(4, a)\}$
(iv) For each element from A we can choose each element from B. If function $f: A \rightarrow B, A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, then we count the number of possible functions from A to $B, a_{1} \rightarrow|B|, a_{2} \rightarrow|B|, a_{3} \rightarrow|B|$, $a_{4} \rightarrow|B|$, i.e., this number is $|B| \cdot|B| \cdot|B| \cdot|B|=|B|^{|A|}=3^{4}=81$.

Thus, there are 81 different functions from A to B.
2.
(i) False. Set A can be a set of arbitrary elements, for ex. "red", "blue", "black".
(ii) False. For ex. $f(x)=x^{2} \rightarrow f(2 x)=4 f(x) \neq 2 f(x)$. .
(iii) False. For ex. $f(x)=\sin (x) . f(a+2 \pi)=f(a)$ but $a \neq a+2 \pi$.

