Answer Question \#47433 - Math - Geometry

How to prove that, the volume formula of sphere is $\frac{4}{3} \pi r^{3}$; without using integration?

Solution

We can find the volume of sphere by Archimedes formula.

Archimedes found after several experiments that the volume of a sphere and also its surface area is exactly $\frac{2}{3}$-rd of the volume and the surface area of a cylinder with the same outer dimensions.

Look at the above diagram.
Let r be the radius of the sphere. Since the over all dimensions of both the sphere and the cylinder are same, the height of the cylinder is $2 r$.

Under this condition the volume of the cylinder is,

$$
\text { Area of the base } \cdot \text { Height of the cylinder }=\pi r^{2} \cdot 2 r=2 \pi r^{3} .
$$

Therefore, as per Archimedes formula the volume of the sphere is,

$$
\frac{2}{3} \cdot 2 \pi r^{3}=\frac{4}{3} \pi r^{3}
$$

