Question \#4736A random sample of 25 was drawn from a normal distribution with a standard deviation of 5 . The sample mean is 80 . Determine the 95% confidence interval estimate of the population mean.
Solution. Let $\left\{\xi_{n}\right\}_{n=1,25}$ be our sample drawn from normal distribution. Condition implies $\xi_{1} \simeq \mathcal{N}(m, 25)$. We are to determine the 95% confidence interval estimate of m. Let find $\mathrm{P}\left(\left|\frac{\frac{1}{25} \sum_{k=1}^{25} \xi_{k}-m}{5 \cdot 1 / 5}\right| \leq x_{0.95}\right)=0.95$. It is evident that $\zeta=\frac{\frac{1}{25} \sum_{k=1}^{25} \xi_{k}-m}{5 \cdot 1 / 5} \simeq \mathcal{N}(0,1)$. Now determine $x_{0.95}$ from relation $\mathrm{P}\left(|\zeta|<x_{0.95}\right)=0.95$, hence $\Phi\left(x_{0.95}\right)=\frac{1+0.95}{2}=0.975$, thus $x_{0.95} \approx 1.96$. And the confidence interval is $(80-1.96,80+1.96)=(78.4,81.96)$.
Answer. (78.4, 81.96).

