Answer on Question \#47291 - Math - Calculus

Question:
$y=(1-x \text { square }+x \text { cube })^{*}(3 x+6)$ differentiate it w.r.t x

Solution:

$y=\left(1-x^{2}+x^{3}\right) \cdot(3 x+6)$ Derivative:
$\frac{d}{d x}\left((3 x+6)\left(x^{3}-x^{2}+1\right)\right)$

Use the product rule
$\frac{d(u \nu)}{d x}=\frac{d u}{d x} v+u \frac{d v}{d x}$,
where $u=3 x+6$ and $v=x^{3}-x^{2}+1$.
$=\left(x^{3}-x^{2}+1\right) \frac{d}{d x}(3 x+6)+(3 x+6) \frac{d}{d x}\left(x^{3}-x^{2}+1\right)$

The derivative of a sum is the sum of the derivatives.
$=\left(x^{3}-x^{2}+1\right)\left(\frac{d}{d x}(6)+\frac{d}{d x}(3 x)\right)+(3 x+6)\left(\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(-x^{2}\right)+\frac{d}{d x}(1)\right)$

The derivative of the constant 6 is 0 .
$=\left(x^{3}-x^{2}+1\right) \frac{d}{d x}(3 x)+(3 x+6)\left(\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(-x^{2}\right)+\frac{d}{d x}(1)\right)$

The derivative of a constant times a function is
the constant times the derivative of the function.
$=3\left(x^{3}-x^{2}+1\right) \frac{d}{d x}(x)+(3 x+6)\left(\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(1)\right)$

The derivative of x^{n} is $n x^{n-1}$
$=(3 x+6)\left(\frac{d}{d x}(1)+3 x^{2}-2 x\right)+3\left(x^{3}-x^{2}+1\right)$

The derivative of the constant 1 is 0 .
$=(3 x+6)\left(3 x^{2}-2 x\right)+3\left(x^{3}-x^{2}+1\right)$

Simplify.
$=3\left(4 x^{3}+3 x^{2}-4 x+1\right)$

Answer:

$$
y^{\prime}=3 \cdot\left(4 x^{3}+3 x^{2}-4 x+1\right)
$$

