Answer on Question \#47192 - Math - Integral Calculus

Find the surface area of the band of the sphere generated by revolving the arc of the circle $x^{2}+y^{2}=r^{2}$ lying above the interval $[-a, a], a<r$.

Solution

In the case when $f(x)$ is positive and has a continuous derivative, the surface area of the surface generated by revolving the curve $y=f(x), x_{1} \leq x \leq x_{2}$ about the x - axis is

$$
S=2 \pi \int_{x_{1}}^{x_{2}} y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

In our case: $y=\sqrt{r^{2}-x^{2}}, x_{1}=-a, x_{2}=a, \frac{d y}{d x}=\frac{1}{2}\left(r^{2}-x^{2}\right)^{-\frac{1}{2}}(-2 x)=\frac{-x}{\sqrt{r^{2}-x^{2}}}$.
Thus,

$$
\begin{gathered}
S=2 \pi \int_{-a}^{a} \sqrt{r^{2}-x^{2}} \sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}} d x=2 \pi \int_{-a}^{a} \sqrt{r^{2}-x^{2}} \frac{r}{\sqrt{r^{2}-x^{2}}} d x=2 \pi \int_{-a}^{a} d x=\left.2 \pi r x\right|_{-a} ^{a} \\
S=2 \pi a r-(-2 \pi a r)=4 \pi a r .
\end{gathered}
$$

Answer: 4 $\boldsymbol{\pi} \boldsymbol{a r}$.

