Answer on Question \#47046 - Math - Set Theory

Problem.
Prove that if A and B are any two sets such that A is proper subset of B, then A union $B=B$ -

1) by direct method
2) by proving its contrapositive.
3) by contradiction.

Solution.

Consider 2 sets A, B.
As $A \subset B$ then $\forall x[x \in A \Rightarrow x \in B]$.
As A is a proper subset of B then $\exists x[x \in B \wedge x \notin A]$.

1) by direct method

$$
P \Rightarrow Q
$$

$\forall x[x \in A \cup B \Rightarrow x \in A \vee x \in B \Rightarrow x \in B \vee x \in B \Rightarrow x \in B]$.
Vice versa, $\forall x[x \in B \Rightarrow x \in A \vee x \in B \Rightarrow x \in A \cup B]$. The proof is complete.
2) by proving its contrapositive $\neg Q \Rightarrow \neg P$.

Obviously, $A \cup B \supseteq B$. Therefore, $A \cup B \neq B \Rightarrow \exists x^{\prime}\left[x^{\prime} \in A \cup B \wedge x^{\prime} \notin B\right]$.
So, $\exists x^{\prime}\left[x^{\prime} \in A \cup B \wedge x^{\prime} \notin B \Rightarrow\left(x^{\prime} \in A \vee x^{\prime} \in B\right) \wedge x^{\prime} \notin B \Rightarrow\left(x^{\prime} \in A \wedge x^{\prime} \notin B\right) \vee\left(x^{\prime} \in B \wedge x^{\prime} \notin\right.\right.$ B) \Rightarrow
$\left.\left(x^{\prime} \in A \wedge x^{\prime} \notin B\right)\right]$, which is the negation to $\forall x[x \in A \Rightarrow x \in B]$ - in other words, the negation to $A \subset B$ - and the proof is complete.
3) by contradiction $P \wedge \neg Q$.

To prove the proposition given, we consider the opposite $-P \wedge \neg Q$. Remember that in the second part we proved that $\neg Q \Rightarrow \neg P$. That's why $P \wedge \neg Q \Rightarrow P \wedge \neg P \equiv \perp$ which arrives at the contradiction we want. The proof is complete.

