Answer on Question #47046 – Math - Set Theory

Problem.

Prove that if A and B are any two sets such that A is proper subset of B, then A union B=B-

1) by direct method

2) by proving its contrapositive.

3) by contradiction.

Solution.

Consider 2 sets A, B. As $A \subset B$ then $\forall x [x \in A \Rightarrow x \in B]$. As A is a proper subset of B then $\exists x [x \in B \land x \notin A]$. **1)** by direct method $P \Rightarrow Q$. $\forall x [x \in A \cup B \Rightarrow x \in A \lor x \in B \Rightarrow x \in B \lor x \in B \Rightarrow x \in B]$. Vice versa, $\forall x [x \in B \Rightarrow x \in A \lor x \in B \Rightarrow x \in A \cup B]$. The proof is complete. **2)** by proving its contrapositive $\neg Q \Rightarrow \neg P$. Obviously, $A \cup B \supseteq B$. Therefore, $A \cup B \neq B \Rightarrow \exists x' [x' \in A \cup B \land x' \notin B]$. So, $\exists x' [x' \in A \cup B \land x' \notin B \Rightarrow (x' \in A \lor x' \in B) \land x' \notin B \Rightarrow (x' \in A \land x' \notin B) \lor (x' \in B \land x' \notin B) \Rightarrow$ $(x' \in A \land x' \notin B)]$, which is the negation to $\forall x [x \in A \Rightarrow x \in B]$ - in other words, the negation to $A \subset B$ - and the proof is complete.

3) by contradiction $P \land \neg Q$.

To prove the proposition given, we consider the opposite $P \land \neg Q$. Remember that in the second part we proved that $\neg Q \Rightarrow \neg P$. That's why $P \land \neg Q \Rightarrow P \land \neg P \equiv \bot$ which arrives at the contradiction we want. The proof is complete.