Answer on Question \#47027 - Math - Vector Calculus

Find the dot product of the following vectors.
$r_{1}=2 i+3 j-5 k, r_{2}=i-2 j+4 k$. Find $r_{1} \cdot r_{2}$.

Solution:

Points in this 3-dimensional space must therefore have three coordinates, not two, and are written as ordered triples: ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). Similarly, vectors will now have three components, such that vector r_{1} will have components $r_{1 x}, r_{1 y}$ and $r_{1 z}$. Writing in ijk notation, we then have k, the unit vector pointing along the z-direction. Three-dimensional vectors can also be written with magnitudes and directions. We can now state the definition of the dot product in 3D form:

$$
\mathrm{r}_{1} \cdot \mathrm{r}_{2}=\mathrm{r}_{1 x}, \mathrm{r}_{2 x}+\mathrm{r}_{1 y}, \mathrm{r}_{2 y}+\mathrm{r}_{1 z}, \mathrm{r}_{2 z}
$$

Now we can determine the dot product of the given vectors. We apply the formula noted above.

The dot product of $r_{1} \cdot r_{2}$ equals

$$
r_{1} \cdot r_{2}=2 \cdot 1+3 \cdot(-2)+(-5) \cdot 4=2+(-6)+(-20)=-4-20=-24
$$

Answer: The dot product of the following vectors r_{1} and r_{2} is equal to -24.

