Answer on Question \#46955- Math - Calculus

Question. Discuss the continuity of the function f, defined by

$$
f(x)= \begin{cases}x^{2}-1, & x \leq 1 \\ 1-1 / x, & x \geq 1\end{cases}
$$

Solution. 1) Suppose $x<1$. Then $f(x)=x^{2}-1$ is a polynomial, and therefore it is continuous at each such x.
2) Suppose $x=1$. Then left limit of f at $x=1$ is equal to

$$
\lim _{x \rightarrow 1-0} f(x)=\lim _{x \rightarrow 1-0} x^{2}-1=1^{2}-1=1-1=0,
$$

and the right limit is

$$
\lim _{x \rightarrow 1+0} f(x)=\lim _{x \rightarrow 1+0} 1-1 / x=1-1 / 1=1-1=0 .
$$

Thus left and right limits of f at $x=1$ coincide, and therefore f is continuous at $x=1$.
3) Finally, let $x>1$. Then $f(x)=1-1 / x$. Since $x \neq 0$, this function is continuous at all such x.

Thus f is continuous at all $x \in \mathbb{R}$.
Answer. f is continuous at all $x \in \mathbb{R}$.

