Answer on Question \#46935 - Math - Vector Calculus

Question.

Find p such that the vectors $w=p i+3 j$ and $v=2 i+q j$ are parallel to $u=5 i+6 j$.
2.7
2.5
3.5
4.1

Solution.

By definition, the magnitude of the cross product is calculated by the following formula:

$$
|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \alpha
$$

So, if vectors \vec{a} and \vec{b} are parallel $\rightarrow \alpha=\pi n \rightarrow \sin \alpha=0 \rightarrow \vec{a} \times \vec{b}=\overrightarrow{0}$.
Therefore, we must use the condition $\vec{w} \times \vec{u}=\overrightarrow{0}$.
In our case, the coordinates of vectors are the following:
$\vec{w}=(p ; 3 ; 0)$
$\vec{u}=(5 ; 6 ; 0)$
Let find the value of p using the condition $\vec{w} \times \vec{u}=\overrightarrow{0}$:

$$
\vec{w} \times \vec{u}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
p & 3 & 0 \\
5 & 6 & 0
\end{array}\right|=\vec{\imath} \cdot 0+\vec{\jmath} \cdot 0+\vec{k} \cdot(6 p-15)=\vec{k} \cdot(6 p-15)=0 \rightarrow p=2.5
$$

Answer.

2.5

