If $X \& Y$ are symmetric random variables, then show that $E\left(\frac{X}{X+Y}\right)=\frac{1}{2}$.

Solution

Rename X as Y and Y as X. Then, by symmetry,
$E\left(\frac{X}{X+Y}\right)=E\left(\frac{Y}{Y+X}\right)=E\left(\frac{Y}{X+Y}\right)$
Now,

$$
E\left(\frac{X+Y}{X+Y}\right) \equiv 1
$$

But the left side is
$E\left(\frac{X}{X+Y}\right)+E\left(\frac{Y}{X+Y}\right)=2 E\left(\frac{X}{X+Y}\right)$, by (1) above.
Then $2 E\left(\frac{X}{X+Y}\right)=1$. Therefore,

$$
E\left(\frac{X}{X+Y}\right)=\frac{1}{2}
$$

as was to be shown.

