Answer on Question \#46855 - Math - Calculus

 FIND THE AREA OF THE REGION ENCLOSED BY THE CURVES $X^{\wedge} 2=Y$ AND $Y=1 / 2\left(X^{\wedge} 4+X\right)$
Solution:

Find the points of intersection of the curves $x^{2}=y$ and $y=\frac{1}{2}\left(x^{4}+x\right)$. We obtained equation

$$
x^{2}=\frac{1}{2}\left(x^{4}+x\right) .
$$

Solve it

$$
\begin{gathered}
\mathrm{x}^{4}-2 * \mathrm{x}^{2}+\mathrm{x}=0 \\
\mathrm{x} *\left(\mathrm{x}^{3}-2 * \mathrm{x}+1\right)=0 \\
\mathrm{x} *(\mathrm{x}-1)\left(\mathrm{x}^{2}+\mathrm{x}-1\right)=0
\end{gathered}
$$

Then $\left(x^{2}+x-1\right)=0, D=1+4=5$ and $x=\frac{-1 \pm \sqrt{5}}{2}$.
We have points of intersection of the curves $x^{2}=y$ and $y=\frac{1}{2}\left(x^{4}+x\right)$

$$
x_{1}=\frac{-1-\sqrt{5}}{2}, x_{2}=0, x_{3}=\frac{-1+\sqrt{5}}{2}, x_{4}=1 .
$$

We drew the curves $x^{2}=y$ and $y=\frac{1}{2}\left(x^{4}+x\right)$ using Maple15: implicitplot $\left(\left[x^{\wedge} 2=y, y=1 / 2^{*}\left(x^{\wedge} 4+x\right)\right], x=-2 . .2, y=-2 . .5\right.$, title $=$ "Graph of functions", color $=$ [blue, green], legend $\left.=\left[x^{\wedge} 2=y, y=1 / 2^{*}\left(x^{\wedge} 4+x\right)\right]\right)$

For x in $\left(\frac{-1-\sqrt{5}}{2}, 0\right)$ and $\left(\frac{-1+\sqrt{5}}{2} ; 1\right)$ curve $\boldsymbol{y}=\boldsymbol{x}^{2}$ is over graph $\boldsymbol{y}=\frac{1}{2}\left(\boldsymbol{x}^{4}+\boldsymbol{x}\right)$. For x in $\left(0 ; \frac{-1+\sqrt{5}}{2}\right)$ curve $y=x^{2}$ is under graph $y=\frac{1}{2}\left(x^{4}+x\right)$. Hence, the area of the region enclosed by the curves $x^{2}=y$ and $y=\frac{1}{2}\left(x^{4}+x\right)$ is equal
$\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}}\left(x^{2}-\frac{1}{2}\left(x^{4}+x\right)\right) d x+\int_{\mathrm{x}_{2}}^{\mathrm{x}_{3}}\left(-x^{2}+\frac{1}{2}\left(x^{4}+x\right)\right) d x+\int_{\mathrm{x}_{3}}^{\mathrm{x}_{4}}\left(x^{2}-\frac{1}{2}\left(x^{4}+x\right)\right) d x=\left.\left(\frac{x^{3}}{3}-\frac{1}{2}\left(\frac{x^{5}}{5}+\frac{x^{2}}{2}\right)\right)\right|_{\mathrm{x}_{0}} ^{\mathrm{x}_{1}}+$ $\left.\left(-\frac{x^{3}}{3}+\frac{1}{2}\left(\frac{x^{5}}{5}+\frac{x^{2}}{2}\right)\right)\right|_{\mathrm{x}_{2}} ^{\mathrm{x}_{3}}+\left.\left(\frac{x^{3}}{3}-\frac{1}{2}\left(\frac{x^{5}}{5}+\frac{x^{2}}{2}\right)\right)\right|_{\mathrm{x}_{3}} ^{\mathrm{X}_{4}} \approx 1$.

We use Maple15 to evaluated this integral:

$$
\begin{aligned}
>x 1:=-0.5-\frac{\sqrt{5}}{2} ; x 2:=0 ; x 3:=-0.5+\frac{\sqrt{5}}{2} ; & x 4:=1 ; \\
& -0.5-\frac{1}{2} \sqrt{5} \\
& 0 \\
& -0.5+\frac{1}{2} \sqrt{5}
\end{aligned}
$$

1

$$
\begin{aligned}
& \text { evalf }\left(\int_{\mathrm{x} 1}^{\mathrm{x} 2}\left(x^{2}-\frac{1}{2}\left(x^{4}+x\right)\right) \mathrm{d} x+\int_{\mathrm{x} 2}^{\mathrm{x} 3}\left(-x^{2}+\frac{1}{2}\left(x^{4}+x\right)\right) \mathrm{d} x+\right. \\
& \left.\quad \int_{\mathrm{x} 3}^{\mathrm{x} 4}\left(x^{2}-\frac{1}{2}\left(x^{4}+x\right)\right) \mathrm{d} x\right)
\end{aligned}
$$

