Answer on Question \#46851 - Math - Differential Calculus |Equations

This problem should be solved using a differential equation:
A person is trying to fill a bathtub with water. Water is flowing into the bathtub from the tap at a constant rate of $k \frac{L}{s}$. However, there is a hole in the bottom of the bathtub and water is flowing out of the bathtub at a rate proportional to the square of the volume of water present in the bathtub. If $V(t)$ is the volume of water (in liters) present in the bathtub at time t (in seconds) and the bathtub initially contains $V(0)$ litters of water.

How can a differential equation of this problem be written? (not solve just writing the equation)

Solution

The conservation equations dictate that the rate of change in volume is given by

$$
\frac{d V(t)}{d t}=\dot{V_{l n}}-V_{o u t}
$$

where $\dot{V_{i n}}$ and $V_{\text {out }}^{\dot{*}}$, are the corresponding inflow and outflow. Note that the units of both magnitudes are $\frac{[V]}{[t]}$, which in your case are $\frac{L}{s}$. So we have $\dot{V_{l n}}=k$ and $V_{o u t}^{\cdot}=\alpha V^{2}$, where α is a constant of proportionality (measured in $\frac{s}{L}$). Thus, we come up with the following nonlinear first order ODE:

$$
\frac{d V}{d t}+\alpha V^{2}=k, V(0)=V_{0}
$$

