
 

 

Answer on Question# #46817 – Mathematics – Calculus 

Question: 

Test the convergence of the series 

∑ (√𝑛2 + 1 − 𝑛)𝑥2𝑛∞
𝑛=1 , 𝑥 > 0.      (1) 

Solution: 

Let’s rewrite (1) in the following form 

∑ (√𝑛2 + 1 − 𝑛)𝑥2𝑛∞
𝑛=1 = ∑ 𝑢𝑛(𝑥)

∞
𝑛=1 ,     (2) 

To determine the interval of convergence for the series (2) we take absolute values and apply the Ratio 
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= |𝑥2|. 

Note that for calculating the limit we have used the properties of limits. Hence, the series converges for 

|𝑥| < 1 (or -1<x<1) and diverges for |𝑥| > 1 (or x<-1 and x>1). 

Now let`s test the convergence of the series at the endpoints of the interval separately. 

At x=-1 the series is  

∑ (√𝑛2 + 1 − 𝑛)(−1)2𝑛∞
𝑛=1 = ∑ (√𝑛2 + 1 − 𝑛) = (√2 − 1) + (√5 − 2) +⋯ .∞

𝑛=1   (3) 

It easy to see, that the series (1) diverges at x=-1. It is clearly that for all natural number n we always 

receive: (−1)2𝑛 = 1.  

At x=1 the series is  

∑ (√𝑛2 + 1 − 𝑛)(1)2𝑛∞
𝑛=1 = ∑ (√𝑛2 + 1 − 𝑛) = (√2 − 1) + (√5 − 2) +⋯ .∞

𝑛=1  (4) 



 

 

The series (1) also diverges at x=1. Perhaps, is not quite obvious that the series diverges. So, let`s use the 

limit comparison test.  

First we rewrite the original series (4) in the following convenient form: 
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Then we compare it with the divergent harmonic series  ∑
1

𝑛
∞
𝑛=1  : 
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As we see, according to the limit comparison test, the original series (4) is also divergent. 

Therefore, the series diverges for 𝑥 ≤ −1 and for 𝑥 ≥ 1. It converges for -1 < x < 1 

Answer: The series ∑ (√𝑛2 + 1 − 𝑛)𝑥2𝑛,   𝑥 > 0
∞

𝑛=1
 converges for -1 < x < 1 and diverges for 𝑥 ≤ −1 

and for 𝑥 ≥ 1. 
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