Answer on Question \#46816 - Math - Calculus

Test the following series for convergence and divergence :
summation from $n=1$ to infinity $\tan ^{\wedge}-1\left(1 / n^{\wedge} 2+n+1\right)$
Solution:
We have a series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\tan \left(\frac{1}{n^{2}+n+1}\right)} \tag{1}
\end{equation*}
$$

Denote $a_{n}=\frac{1}{\tan \left(\frac{1}{n^{2}+n+1}\right)}$
We know $\lim _{x \rightarrow 0} \tan x=0$,
It's mean that $\tan x \sim x$ when $x \rightarrow 0$. Hence

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\tan \left(\frac{1}{n^{2}+n+1}\right)}=\lim \left(n^{2}+n+1\right)=\infty
$$

Because

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}+n+1}=0
$$

Therefor series (1) divergent as a necessary condition of convergence is not satisfied.
For series $\sum_{n=1}^{\infty} a_{n}$ we have(necessary condition of convergence):
if $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$ and if $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Actually, maybe it should have been series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \tan \left(\frac{1}{n^{2}+n+1}\right) \tag{2}
\end{equation*}
$$

The series (2) converges. Because
we have $\tan \left(\frac{1}{n^{2}+n+1}\right) \sim \frac{1}{n^{2}+n+1}$ when $n \rightarrow \infty$. Then $\frac{1}{n^{2}+n+1} \leq \frac{1}{n^{2}}$ for any natural n. The series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}
$$

converges for all $\alpha>1$ and divergent for all $\alpha \leq 1$. Hence series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges and consequently series (2) converge by comparison test:

Comparison test. The terms of the sequence $\left\{a_{n}\right\}$ are compared to those of another sequence $\left\{b_{n}\right\}$. If,
for all $\mathrm{n}, 0 \leq a_{n} \leq b_{n}$, and $\sum_{n=1}^{\infty} b_{n}$ converges, then so does $\sum_{n=1}^{\infty} a_{n}$.
However, if for all $\mathrm{n}, 0 \leq b_{n} \leq a_{n}$, and $\sum_{n=1}^{\infty} b_{n}$ diverges, then so does $\sum_{n=1}^{\infty} a_{n}$.

