## Answer on Question \#46798 - Math - Analytic Geometry

## Question:

Find two unit vectors perpendicular to both $\overline{\boldsymbol{A}}=\overline{\boldsymbol{i}}-2 \overline{\boldsymbol{j}}+3 \overline{\boldsymbol{k}}$ and $\overline{\boldsymbol{B}}=-2 \overline{\boldsymbol{i}}+4 \overline{\boldsymbol{j}}$.

## Solution.

There are two ways to construct vectors perpendicular to the pair of given vectors: through scalar product and through cross (or vector) product.

1. Scalar (dot, inner) product.

Let $\overline{\boldsymbol{C}}=x \overline{\boldsymbol{i}}-y \overline{\boldsymbol{j}}+z \overline{\boldsymbol{k}}$ be the vector perpendicular to both given vectors.
Then, by properties of scalar product $\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{C}}=0$ and $\overline{\boldsymbol{B}} \cdot \overline{\boldsymbol{C}}=0$.
It means that each solution of system $\left\{\begin{array}{c}x-2 y+3 z=0 \\ -2 x+4 y=0\end{array}\right.$ gives the required vector. To
solve this system, set, for example, $\mathrm{y}=1$ and find other coordinates from system
$\left\{\begin{array}{c}x-2+3 z=0 \\ -2 x+4=0\end{array}\right.$
From second equation we have $x=2$, and then obtain $z=0$ from the first equation Hence $\overline{\boldsymbol{C}}=2 \overline{\boldsymbol{i}}+\overline{\boldsymbol{j}}$ is perpendicular to both $\overline{\boldsymbol{A}}$ and $\overline{\boldsymbol{B}}$.

To obtain unit vectors we have to divide the vector by its magnitude:

$$
\overline{\boldsymbol{n}}_{1,2}= \pm \frac{\overline{\boldsymbol{c}}}{|\overline{\boldsymbol{C}}|}= \pm \frac{2 \overline{\boldsymbol{i}}+\overline{\boldsymbol{j}}}{\sqrt{4+1}}= \pm\left(\frac{2}{\sqrt{5}} \overline{\boldsymbol{i}}+\frac{1}{\sqrt{5}} \overline{\boldsymbol{j}}\right)
$$

2. Cross product

By properties of cross product $\overline{\boldsymbol{C}}=\overline{\boldsymbol{A}} \times \overline{\boldsymbol{B}}$ is perpendicular to both $\overline{\boldsymbol{A}}$ and $\overline{\boldsymbol{B}}$.
Calculate

$$
\overline{\boldsymbol{C}}=\left|\begin{array}{ccc}
\overline{\boldsymbol{i}} & \overline{\boldsymbol{j}} & \overline{\boldsymbol{k}} \\
1 & -2 & 3 \\
-2 & 4 & 0
\end{array}\right|=\left|\begin{array}{cc}
-2 & 3 \\
4 & 0
\end{array}\right| \overline{\boldsymbol{i}}-\left|\begin{array}{cc}
1 & 3 \\
-2 & 0
\end{array}\right| \overline{\boldsymbol{j}}+\left|\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right| \overline{\boldsymbol{k}}=-12 \overline{\boldsymbol{i}}-6 \overline{\boldsymbol{j}}
$$

After division by magnitude we obtain the same result

$$
\bar{n}_{1,2}= \pm \frac{\overline{\boldsymbol{c}}}{|\overline{\boldsymbol{C}}|}= \pm \frac{-12 \overline{\boldsymbol{i}}-6 \overline{\boldsymbol{j}}}{\sqrt{144+36}}= \pm \frac{-12 \overline{\boldsymbol{i}}-6 \overline{\boldsymbol{j}}}{6 \sqrt{5}}=\mp\left(\frac{2}{\sqrt{5}} \overline{\boldsymbol{i}}+\frac{1}{\sqrt{5}} \overline{\boldsymbol{j}}\right)
$$

Answer: Two unit vectors are $\overline{\boldsymbol{n}}_{1}=\frac{2}{\sqrt{5}} \overline{\boldsymbol{i}}+\frac{1}{\sqrt{5}} \overline{\boldsymbol{j}}$ and $\overline{\boldsymbol{n}}_{2}=-\frac{2}{\sqrt{5}} \overline{\boldsymbol{i}}-\frac{1}{\sqrt{5}} \overline{\boldsymbol{j}}$

