Answer on Question \#46754 - Math - Statistics and Probability

(i) Each computer chip made in a certain plant will, independently, be defective with probability 0.25 . If a sample of 1,000 chips is tested, what is the approximate probability that fewer than 200 chips will be defective?

Solution:

$n=1000$
$\mathrm{p}=0.25$
$q=1-p=0.75$
$P(x<200)-$?
Finding the binomial standard deviation:

$$
\sigma=\sqrt[2]{n p(1-p)}=\sqrt[2]{1000 \cdot 0.25(1-0.25)}=\sqrt[2]{187,5}
$$

Standardize the values of x using the Z-score formula:

Also we to use $x=199.75$ for the continuity correction.

$$
z=\frac{x-n p}{\sigma}=\frac{199.75-250}{\sqrt[2]{187,5}}=\frac{-50.25}{13.693}=-3.67
$$

Go to the Z-score chart to find the final answer:

$$
P(x<200)=P(z<-3.67)=0.0001
$$

Answer: 0.0001
(ii) A manufacturer of computer terminals claims that its product will last at least for 500 hours without needing repairs. Soft-i-Tech is considering buying many computer terminals. But, it wants to ensure that the claim made by the manufacturer is reasonably true. Soft-i-Tech's quality control managers examine the records of the manufacturer and find that a sample of 100 terminals had the average time before first breakdown occurred was 48 hours with a sample standard deviation of 25 hours. Use this scenario that as you decrease α, say from 0.5 to $0.1 \beta(49)$ increases. What is the conclusion from this?

Solution:

The conclusion is: each 100 terminals breakdown every 48 ± 25 hours.

