Answer on Question \#46752 - Math - Statistics and Probability

A consumer buys n light bulbs, each of which has a life time that has a mean of 800 hours and a standard deviation of 100 hours. A light bulb is replaced by another as soon as it burns out. Assuming independence of life times, find the smallest value of n so that the succession of light bulbs produces light bulbs for at least 10,000 hours with a probability of 0.9 . Do you think it is necessary to know the probability distribution of the light bulbs? Explain.

Solution

Let's use The Central Limit Theorem. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are independent and all having a distribution $W\left(\mu ; \sigma^{2}\right)$. Then if n is sufficiently large:

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n} \approx N\left(n \mu ; n \sigma^{2}\right)
$$

Now let $X_{1}, X_{2}, \ldots, X_{n}$ be the lifetimes of the n bulbs used in succession. Find n such that $P\left(X_{1}+X_{2}+\cdots+X_{n}>10000\right)=0.9$ and $X_{1}+X_{2}+\cdots+X_{n} \mapsto N\left(800 n ; 100^{2} n\right)$ hence

$$
\begin{aligned}
P\left(X_{1}+X_{2}+\cdots\right. & \left.+X_{n}>10000\right)=P\left(\frac{X_{1}+X_{2}+\cdots+X_{n}-800 n}{100 \sqrt{n}}>\frac{100-8 n}{\sqrt{n}}\right)=P\left(Z>\frac{100-8 n}{\sqrt{n}}\right) \\
& =0.9
\end{aligned}
$$

From table of standard normal distribution, $\frac{100-8 n}{\sqrt{n}}=-1.28$, and $n=14$ by solving a quadratic equation.
It is not necessary to know the probability distribution of the light bulbs if we can use assumption that n is sufficiently large. Then by The Central Limit Theorem we can work with normal distribution:

$$
X_{1}+X_{2}+\cdots+X_{n} \mapsto N\left(800 n ; 100^{2} n\right)
$$

