Consider the test $H_{0}: \mu \leq 100$ vs $H_{1}: \mu>100$. Suppose that a sample of size $n=36$ has a sample mean of $\bar{x}=105$.
(i) Determine the p -value of this outcome if the population standard deviation is known to be $\sigma=15$.
(ii) Based on the p-value obtained in (i) above for what values of α you would reject H_{0}
(a) 0.01,
(b) 0.02
(c) 0.06 .

You are not expected to perform the test all over again for each value of α; instead conclude based on outcome of (i) above.

Solution

(i)

$$
z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{105-100}{\frac{15}{\sqrt{36}}}=2
$$

$$
p-\text { value }=P(z>2)=0.0228
$$

(ii) (a) $\alpha=0.01$. This p-value is bigger than α, thus we don't reject H_{0}.
(b) $\alpha=0.02$. This p -value is bigger than α, thus we don't reject H_{0}.
(c) $\alpha=0.06$. This p -value is smaller than α, thus we reject H_{0}.

