Answer on Question #46750 - Math - Statistics and Probability

Consider the test $H_0: \mu \le 100$ vs $H_1: \mu > 100$. Suppose that a sample of size n = 36 has a sample mean of $\bar{x} = 105$.

- (i) Determine the p-value of this outcome if the population standard deviation is known to be $\sigma = 15$.
- (ii) Based on the p-value obtained in (i) above for what values of α you would reject H_0
 - (a) 0.01,
 - (b) 0.02
 - (c) 0.06.

You are not expected to perform the test all over again for each value of α ; instead conclude based on outcome of (i) above.

Solution

(i)

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{105 - 100}{\frac{15}{\sqrt{36}}} = 2.$$
$$p - value = P(z > 2) = 0.0228.$$

(ii) (a) $\alpha = 0.01$. This p-value is bigger than α , thus we don't reject H_0 .

- (b) $\alpha = 0.02$. This p-value is bigger than α , thus we don't reject H_0 .
- (c) $\alpha = 0.06$. This p-value is smaller than α , thus we reject H_0 .