

Answer on Question #46682 – Math – Algorithms | Quantitative Methods

The equation 0.25

3.2

$x + x - =$ has a positive root in the interval $[2,1]$. Write a fixed point iteration method and show that it converges. Starting with initial approximation

$5.1 x_0 =$ find the root of the equation. Perform two iterations.

Solution.

$$x^3 + 2x^2 - 5 = 0 \rightarrow x = \sqrt[3]{5 - 2x^2}$$

For the equation $x = g(x)$ fixed point iteration method is:

$$x_{n+1} = g(x_n), \quad n = 0, 1, \dots$$

If $g(x)$ and $g'(x)$ are continuous on an interval J about their root s of the equation $x = g(x)$ and $|g'(x)| < 1$ for all x in the interval J then the fixed point iterative process $x_{n+1} = g(x_n), \quad n = 0, 1, \dots$ will converge to the root $x = s$ for any initial approximation x_0 belongs to the interval J .

In our case: $g(x) = \sqrt[3]{5 - 2x^2}$, $g'(x) = \frac{1}{3}(5 - 2x)^{-\frac{2}{3}}$, $g(x)$ and $g'(x)$ are continuous on the interval $(1, 2)$, $|g'(x)| < \frac{1}{3}$ on $(1, 2)$, thus the iteration method converges.

$$x_0 = 1.5,$$

$$x_1 = \sqrt[3]{5 - 2 * 1.5^2} = 1.40$$

$$x_2 = \sqrt[3]{5 - 2 * 1.4^2} = 1.45$$

$$x_3 = \sqrt[3]{5 - 2 * 1.45^2} = 1.426.$$