The equation 025
32
$x+x-=$ has a positive root in the interval $[2,1]$. Write a fixed point iteration method and show that it converges. Starting with initial approximation
$5.1 \times 0=$ find the root of the equation. Perform two iterations.

Solution.

$x^{3}+2 x^{2}-5=0 \rightarrow x=\sqrt[3]{5-2 x^{2}}$
For the equation $\boldsymbol{x}=\boldsymbol{g}(\boldsymbol{x})$ fixed point iteration method is:
$x_{n+1}=g\left(x_{n}\right), \quad n=0,1, \ldots$
If $\boldsymbol{g}(\boldsymbol{x})$ and $\boldsymbol{g}^{\prime}(\boldsymbol{x})$ are continuous on an interval J about their root \boldsymbol{s} of the equation $x=g(x)$ and $\left|g^{\prime}(x)\right|<1$ for all x in the interval J then the fixed point iterative process $x_{n+1}=g\left(x_{n}\right), \quad n=0,1, \ldots$ will converge to the root $x=s$ for any initial approximation x_{0} belongs to the interval J .

In our case: $g(x)=\sqrt[3]{5-2 x^{2}}, g^{\prime}(x)=\frac{1}{3}(5-2 x)^{-\frac{2}{3}}, g(x)$ and $g^{\prime}(x)$ are continuous on the interval $(1,2),\left|g^{\prime}(x)\right|<\frac{1}{3}$ on (1,2), thus the iteration method converges.

$$
\begin{aligned}
& x_{0}=1.5 \\
& x_{1}=\sqrt[3]{5-2 * 1.5^{2}}=1.40 \\
& x_{2}=\sqrt[3]{5-2 * 1.4^{2}}=1.45 \\
& x_{3}=\sqrt[3]{5-2 * 1.45^{2}}=1.426 .
\end{aligned}
$$

