Answer on Question \#46681 - Math - Algebra

Find the number of positive and negative roots of the equation

$$
8 x^{5}+12 x^{4}-10 x^{3}+17 x^{2}-18 x+5=0
$$

Solution:

To find possibilities for positive real zeros we count the number of sign changes in the equation for $f(x)$.

This equation has the signs: ++-+-+ . It has 2 sign changes, so the equation has 2 or (multiples of 2 less) positive real roots. That is, it has 2 or 0 positive real roots.

To find possibilities for negative real zeros we count the number of sign changes in the equation for $f(-x)$. We obtain this equation by replacing x with $-x$ in the given function.

We can check the number of negative real roots by noting:

$$
f(-x)=8(-x)^{5}+12(-x)^{4}-10(-x)^{3}+17(-x)^{2}-18(-x)+5
$$

We obtained the following result.

$$
f(-x)=-8 x^{5}+12 x^{4}+10 x^{3}+17 x^{2}+18 x+5
$$

This equation has the signs: -+++++ .
There is only one sign change in this "negative" case, so there is exactly one negative root.

There are 2 , or 0 positive real roots, and exactly 1 negative root.
The roots of this equation are: $\frac{-5}{2}, \frac{1}{2}, \frac{1}{2},-i, i$.

