Answer on Question \#46678 - Math - Algorithms | Quantitative Methods

Using synthetic division and perform two iterations of the Birge-Vieta method to find the smallest positive root of the equation $x^{4}-3 x^{3}+3 x^{2}-3 x+2=0$. Use the initial approximation $\mathrm{p}_{0}=0.5$.

Solution:

In the given task according to the condition, we have the initial approximation $\mathrm{p}_{0}=0.5$. So we apply the synthetic division to our equation based on the above information.

0.5	1	-3	3		-3	2
		0.5	-1.25	0.875	-1.0625	
	1	-2.5	1.75	-2.125	$0.9375=b_{4}$	
		0.5	-1	0.375		
	1	-2	0.75	$-1.750=c_{3}$		

Then the value of $\mathrm{p}_{1}=\mathrm{p}_{0}-\frac{b_{4}}{c_{3}}=0.5-\frac{0.9375}{-1.750}=1.0356$

Now we substitute the find value of p_{1} equal to 1.0356 .

1.0356	1	-3	3	-3		2
		1.0356	-2.0343	1.0001	-2.0711	
	1	-1.9644	0.9657	-1.9999	$-0.0711=b_{4}$	
		1.0356	-0.9619	0.0039		
	1	-0.9288	0.0038	$-1.9960=c_{3}$		

Then we can calculate the value of $\mathrm{p}_{2}=\mathrm{p}_{1}-\frac{b_{4}}{c_{3}}=1.0356-\frac{-0.0711}{-1.9960}=0.99997875$

Finally we found the smallest positive root of the equation which is equal to 1.0

