

Answer on Question #46677 – Math – Algorithms | Quantitative Methods

Solve the system of equations

$$73x + 2y + 4z =$$

$$72x + y + z =$$

$$2x + 3y + 5z =$$

using Gauss elimination with pivoting. Store the multipliers and also write the pivoting vector.

Solution.

$$\begin{cases} 3x + 2y + 4z = 7 \\ 2x + y + z = 7 \\ x + 3y + 5z = 2 \end{cases}$$

- Swap Row 1 and Row 3. After this step we have:

$$\begin{cases} x + 3y + 5z = 2 \\ 2x + y + z = 7 \\ 3x + 2y + 4z = 7 \end{cases}$$

- Multiply the first equation by -2 and add the result to the second equation. The result is:

$$\begin{cases} x + 3y + 5z = 2 \\ -5y - 9z = 3 \\ 3x + 2y + 4z = 7 \end{cases}$$

- Multiply the first equation by -3 and add the result to the third equation. The result is:

$$\begin{cases} x + 3y + 5z = 2 \\ -5y - 9z = 3 \\ -7 - 11z = 1 \end{cases}$$

- Multiply the second equation by $-\frac{7}{5}$ and add the result to the third equation. The result is:

$$\begin{cases} x + 3y + 5z = 2 \\ -5y - 9z = 3 \\ \frac{8}{5}z = -\frac{16}{5} \end{cases}$$

- Solve for z.

$$z = -2$$

- Solve for y.

$$-5y - 9z = 3 \rightarrow y = 3$$

- solve for x by substituting y=3 and z=-2 into the first equation.
 $x + 3y + 5z = 2 \rightarrow x = 3.$

Finally, $x = 3, y = 3, z = -2.$