Answer on Question \#46677 - Math - Algorithms | Quantitative Methods
Solve the system of equations
$73 x+2 y+4 z=$
$72 x+y+z=$
$2 x+3 y+5 z=$
using Gauss elimination with pivoting. Store the multipliers and also write the pivoting vector.

Solution.

$\left\{\begin{array}{c}3 x+2 y+4 z=7 \\ 2 x+y+z=7 \\ x+3 y+5 z=2\end{array}\right.$

- Swap Row 1 and Row 3.After this step we have:
$\left\{\begin{array}{c}x+3 y+5 z=2 \\ 2 x+y+z=7 \\ 3 x+2 y+4 z=7\end{array}\right.$
- Multiply the first equation by $\mathbf{- 2}$ and add the result to the second equation. The result is:
$\left\{\begin{array}{c}x+3 y+5 z=2 \\ -5 y-9 z=3 \\ 3 x+2 y+4 z=7\end{array}\right.$
- Multiply the first equation by $\mathbf{- 3}$ and add the result to the third equation. The result is:

$$
\left\{\begin{array}{c}
x+3 y+5 z=2 \\
-5 y-9 z=3 \\
-7-11 z=1
\end{array}\right.
$$

- Multiply the second equation by $-\frac{7}{5}$ and add the result to the third equation. The result is:

$$
\left\{\begin{array}{c}
x+3 y+5 z=2 \\
-5 y-9 z=3 \\
\frac{8}{5} z=-\frac{16}{5}
\end{array}\right.
$$

- Solve for z .
$z=-2$
- Solve for y .
$-5 y-9 z=3 \rightarrow y=3$
- solve for x by substituting $\mathrm{y}=3$ and $\mathrm{z}=-2$ into the first equation. $x+3 y+5 z=2 \rightarrow x=3$.

Finally, $x=3, \quad y=3, \quad z=-2$.

