Answer on Question \#46672 - Math - Algorithms | Quantitative Methods

Find an interval of unit length which contains the smallest negative root in magnitude of the equation $x^{3}+x+12=0$. Taking the midpoint of this interval as initial approximation and using Newton-Raphson method find the root correct to three decimal places.

Solution:

Let $f(x)=x^{3}+x+12=0$. Since, the smallest negative real root in magnitude is required; we form a table of values for $\mathrm{x}<0$.

x	-5	-4	-3	-2	-1
$f(x)$	-118	-56	-18	2	10

Since, $f(-3) f(-2)<0$, the negative root of smallest magnitude lies in the interval
$(-3,-2)$. So we put the initial approximation as $x_{0}=-2.5$. We have the following.

$$
f(x)=x^{3}+x+12=0, f^{\prime}(x)=3 x^{2}+1
$$

We use the Newton-Raphson method.

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

We have the following results.

$$
x_{k+1}=x_{k}-\frac{x^{3}{ }_{k}+x_{k}+12}{3 x^{2}{ }_{k}+1}=\frac{2 x^{3}{ }_{k}-12}{3 x^{2}{ }_{k}+1}, k=-1,-2 \ldots .
$$

We start with $x_{0}=-2.5$ and obtained

$$
\begin{gathered}
x_{1}=\frac{2(-2.5)^{3}-12}{3(-2.5)^{2}+1}=\frac{-43.25}{19.75}=-2.190, \\
x_{2}=\frac{2(-2.190)^{3}-12}{3(-2.190)^{2}+1}=\frac{-33.007}{15.3883}=-2.145 \\
x_{3}=\frac{2(-2.145)^{3}-12}{3(-2.145)^{2}+1}=\frac{-31.738}{14.803}=-2.144 \\
x_{4}=\frac{2(-2.144)^{3}-12}{3(-2.144)^{2}+1}=\frac{-31.711}{14.790}=-2.144
\end{gathered}
$$

Finally we found that the root correct to three decimal places is $x \approx-2.144$.

