Answer on Question \#46644 - Math - Calculus

Problem:

Find the derivative of the function $f(x)=\left(x^{3}+9 x+4\right)\left(10+\frac{1}{x^{2}}\right)$

Solution

If we have three functions $f(x), g(x), q(x)$ and $f(x)=g(x) q(x)$ then the derivative of the product of functions is calculated by the following formula $f^{\prime}(x)=g^{\prime}(x) q(x)+g(x) q^{\prime}(x)$.

Use this rule in our problem
Let $g(x)=x^{3}+9 x+4$ and $q(x)=10+\frac{1}{x^{2}}$

$$
\begin{aligned}
& f^{\prime}(x)=\left(\left(x^{3}+9 x+4\right)\left(10+\frac{1}{x^{2}}\right)\right)^{\prime}=\left(x^{3}+9 x+4\right)^{\prime}\left(10+\frac{1}{x^{2}}\right)+\left(x^{3}+9 x+4\right)\left(10+\frac{1}{x^{2}}\right)^{\prime}= \\
& =\left(3 x^{2}+9\right)\left(10+\frac{1}{x^{2}}\right)+\left(x^{3}+9 x+4\right)\left(-2 \frac{1}{x^{3}}\right)=30 x^{2}+90+3+\frac{9}{x^{2}}-2-\frac{18}{x^{2}}-\frac{8}{x^{3}}= \\
& =30 x^{2}+91-\frac{9}{x^{2}}-\frac{8}{x^{3}}
\end{aligned}
$$

Answer

$f^{\prime}(x)=30 x^{2}+91-\frac{9}{x^{2}}-\frac{8}{x^{3}}$

