Answer on Question \#46562 - Math - Calculus

b) The Fibonacci sequence is defined as follows:

$$
a_{n+2}=a_{n}+a_{n+1} \text { for } n \geq 1, \text { where } a_{1}=a_{2}=1 .
$$

i. List the first eight terms of the sequence.
ii. Find $\operatorname{Lim}\left(a_{n}+1 / a_{n}\right)$ assuming that it exists.

Solution:

I
First eight terms of the Fibonacci sequence:

$$
1,1,2,3,5,8,13,21
$$

II

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

As previously stated, the Fibonacci Sequence is defined as:

$$
a_{n+1}=a_{n}+a_{n-1}
$$

Therefore, the ratio of consecutive terms of this sequence is defined as:

$$
\frac{a_{n+1}}{a_{n}}=\frac{a_{n}+a_{n-1}}{a_{n}}
$$

Well, $\frac{a_{n}+a_{n-1}}{a_{n}}=\frac{a_{n}}{a_{n}}+\frac{a_{n-1}}{a_{n}}=1+\frac{a_{n-1}}{a_{n}}$
L,The limiting value of the the ratio of consecutive terms of the Fibonacci Sequence, must be equal to the defined value of the ratio. In other words,

$$
\mathrm{L}=\frac{\mathrm{a}_{\mathrm{n}+1}}{\mathrm{a}_{\mathrm{n}}}
$$

Plugging this back into our equation for the ratio of the consecutive terms, we get $\frac{\mathrm{a}_{\mathrm{n}+1}}{\mathrm{a}_{\mathrm{n}}}=\mathrm{L}=1+\frac{1}{\mathrm{~L}}$. Because all terms a_{n} are positive, the limit L is also positive.
Using the quadratic equation $L^{2}-L-1=0$ to solve for L, we find that

$$
\mathrm{L}=\frac{1+\sqrt{5}}{2} \approx 1.62
$$

Answer:
I) First eight terms of the Fibonacci sequence:

$$
1,1,2,3,5,8,13,21
$$

II) $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{1+\sqrt{5}}{2} \approx 1.62$.

