Answer on Question \#46561 - Math - Calculus

Question:

A ball is dropped from a height of 10 m . Each time the ball strikes the ground it bounces vertically to a height that is $3 / 4$ of the preceding height. Find the total distance the ball will travel if it is allowed to bounce indefinitely.

Solution:

When the ball hits the ground the first time it has travelled $D_{1}=10 \mathrm{~m}$.
Between the first and second bounces the ball will travel

$$
\begin{equation*}
\mathrm{D}_{2}=\left(\frac{3}{4}\right)(10)+\left(\frac{3}{4}\right) \tag{10}
\end{equation*}
$$

Between the second and third bounces the ball will travel

$$
D_{3}=\left(\frac{3}{4}\right)^{2}(20)
$$

and so on, so between the $(\mathrm{n}-1)^{\mathrm{th}}$ and $\mathrm{n}^{\text {th }}$ bounces the ball will travel

$$
\begin{equation*}
D_{\mathrm{n}}=\left(\frac{3}{4}\right)^{\mathrm{n}-1} \tag{20}
\end{equation*}
$$

Summing these distances (after D_{1}) we have

$$
\begin{equation*}
\text { distance }=10+\sum_{\mathrm{n}=1}^{\infty}\left(\frac{3}{4}\right)^{\mathrm{n}} \tag{20}
\end{equation*}
$$

Now this is almost the geometric series, we know

$$
\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}(20)=\frac{20}{1-3 / 4}=80
$$

and we can see that

$$
\sum_{\mathrm{n}=0}^{\infty}\left(\frac{3}{4}\right)^{\mathrm{n}}(20)=20+\sum_{\mathrm{n}=1}^{\infty}\left(\frac{3}{4}\right)^{\mathrm{n}}(20)=80
$$

Therefore the sum we want is 60 . Hence

$$
\text { distance }=10+\sum_{\mathrm{n}=1}^{\infty}\left(\frac{3}{4}\right)^{\mathrm{n}}(20)=10+60=70 \mathrm{~m}
$$

Answer: 70 m.

