Suppose that, on average, 1 person in 1000 makes a numerical error in preparing his or her income tax return. If 10,000 forms are selected at random and examined, find the probability that at most 2 of the forms contain an error.

Solution

We have $n=10000$ is large and $p=\frac{1}{1000}$ is near 0 , then the binomial distribution can be approximated by the Poisson distribution with parameter $\lambda=n p=10000 \cdot \frac{1}{1000}=10$.

The probability that at most 2 of the forms contain an error is

$$
P(\text { at most } 2)=P(0)+P(1)+P(2)
$$

Using Poisson distribution:

$$
P(\text { at most } 2)=\frac{10^{0} e^{-10}}{0!}+\frac{10^{1} e^{-10}}{1!}+\frac{10^{2} e^{-10}}{2!}=e^{-10}(1+10+50)=0.0028
$$

Answer: 0.0028.

