Answer on Question \#46501 - Math - Statistics and Probability

Problem.

A population of size 500 is divided into 4 strata. The following table gives the (5) data on size and standard deviation of each stratum.

STRATA
I II III IV
Size, $N_{i} \quad 100150150100$
S.D., $\sigma_{i} \quad 5 \quad 8 \quad 710$

A stratified random sample of size 100 is to be drawn from the population.
Determine the size of samples from each of these strata for:
i) proportional allocation
ii) Neyman's optimal allocation

Solution:

(i) Strata sample sizes are determined by the following equation for proportional allocation:

$$
n_{i}=\frac{N_{i}}{N} \cdot n
$$

where n_{i} is the sample size for stratum i, N_{i} is the population size for stratum $i\left(N_{1}=100\right.$, $\left.N_{2}=150, N_{3}=150, N_{4}=100\right), N=500$ is total population size, and $n=100$ is total sample size.
Hence for proportional allocation and random sample of size 100 we will obtain the following table:

	STRATA			
	I	II	III	IV
Size,n_{i}	20	30	30	20

(ii) Strata sample sizes are determined by the following equation for Neyman's optimal allocation:

$$
n_{i}=\frac{N_{i} \sigma_{i}}{\sum_{i} N_{i} \sigma_{i}} \cdot n
$$

where n_{i} is the sample size for stratum i, N_{i} is the population size for stratum $i\left(N_{1}=100\right.$, $\left.N_{2}=150, N_{3}=150, N_{4}=100\right), \sigma_{i}$ is the standard deviation of stratum $i\left(\sigma_{1}=5, \sigma_{2}=8\right.$, $\left.\sigma_{3}=7, \sigma_{4}=10\right)$ and $n=100$ is total sample size.
Hence for Neyman's optimal allocation and random sample of size 100 we will obtain the following table:

	STRATA			
	I	II	III	IV
Size, n_{i}	$13 \frac{1}{3} \approx 13$	32	28	$26 \frac{2}{3} \approx 27$

