Answer on Question \#46491 - Math - Statistics and Probability

The average hourly wage of a sample of $n_{1}=150$ workers in plant A was $\overline{x_{1}}=\$ 2.56$ with a standard deviation of $s_{1}=\$ 1.00$. The average hourly wage of a sample of $n_{2}=200$ workers in plant B was $\overline{x_{2}}=$ $\$ 2.87$ with a standard deviation of $s_{2}=\$ 1.20$.

Write a suitable hypothesis to test whether the wages are comparable and test it.

Solution

$$
H_{0}: \mu_{1}=\mu_{2} ; H_{A}: \mu_{1} \neq \mu_{2}
$$

Let the significance level $\alpha=0.1$.

$$
z=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{2.56-2.87}{\sqrt{\frac{1.00^{2}}{150}+\frac{1.20^{2}}{200}}}=-2.63 .
$$

Rejection rule: reject H_{0} if $|z| \geq z_{\alpha / 2}$, i.e. $|z| \geq z_{\alpha / 2},|z| \geq 1.645$, that is, either $z \leq-1.645$ or $z \geq 1.645$.
We reject the null hypothesis at $\alpha=0.1$ significance level because $z=-2.63<-Z_{\frac{\alpha}{2}}=-Z_{0.05}=-1.645$.

