Answer on Question \#46487 - Math - Statistics and Probability

Problem.

A random sample of size 10 from a normal population gives the values, $64,72,65,70,68,71,65,62,66,67$.
If it is known that the standard error of the sample mean is $\mathbf{V} 0.64$, find the 95% confidence limits for the population mean. Also find the population variance.

Solution:

The mean of this sample equals $\bar{x}=\frac{64+72+65+70+68+71+65+62+66+67}{10}=67$.
For 95% confidence interval $z^{*}=1.96$.
The confidence limits for the population mean are equal to $\bar{x} \pm z^{*} \cdot \mathrm{SE}$ (SE $=\sqrt{0.64}=0.8$) or 65.432 and 68.568 .

$$
\mathrm{SE}=\frac{\sqrt{\mathrm{Var}}}{\sqrt{n}}
$$

so the population variance equals $\operatorname{Var}=n \mathrm{SE}^{2}=6.4$.

Answer: confidence limits for the population mean are 65.432 and 68.568; the population variance equals Var $=6.4$.

