## Answer on Question \#46481 - Math - Statistics and Probability

Suppose the quantity of cream obtained from a tin of milk is uniformly distributed with a mean of 10 kg and range of 1.8 kg . Then:
i. What are the largest and the smallest amount of cream obtained from a tin of milk?

## Solution:

The largest and the smallest amount of cream obtained from a tin of milk determined by mean and range. The Range is the difference between the lowest and highest values. Mean is $\frac{1}{2}(a+b)$ where $a$ - the smallest amount and $b$ - is the largest amount. So go get $a$ and $b$, need to solve the system of equations:

$$
\left\{\begin{array}{c}
10=\frac{1}{2}(a+b) \\
1.8=b-a
\end{array}\right.
$$

Using the substitution method: $b=1.8+a$, then $10=\frac{1}{2}(a+1.8+a)$ equal to $20=2 a+1.8 ; 2 a=$ $18.2 ; a=9.1 ; b=1.8+9.1=10.9$

Answer: The smallest amount cream obtained from a tin of milk is 9.1 and the largest amount is 10.9.
ii. What is the probability that a tin of milk will give cream weighing between 9.2 kg and 10.8 kg ?

## Solution:

The probability that a tin of milk will give cream weighing between 9.2 kg and 10.8 kg determined by definite integral:

$$
P(X \in[x 1, x 2])=\int_{x 1}^{x 2} \frac{d y}{b-a}
$$

Where: $x 1=9.2 ; x 2=10.8 ; a$ and $b$ is smallest and largest amount cream obtained from a tin of milk $\mathrm{b}=10.8$ and $\mathrm{a}=9.2$.

Calculating definite integral:

$$
P(X \in[9.2,10.8])=\int_{9.2}^{10.8} \frac{d y}{b-a}=\left.\frac{y}{10.8-9.2}\right|_{9.2} ^{10.8}=\frac{10.8}{1.8}-\frac{9.2}{1.8}=\frac{1.6}{1.8}=\frac{8}{9}
$$

Answer: Probability that a tin of milk will give cream weighing between 9.2 kg and 10.8 kg is $\frac{8}{9}$

