Give an example of a rational function that has a horizontal asymptote at $\mathrm{y}=1$ and a vertical asymptote at $\mathrm{x}=4$.

Solution.

Consider the function $f(x)=\frac{x+4}{x-4}$.
Vertical asymptotes are vertical lines which correspond to the zeroes of the denominator of a rational function. In our case only zero of of the denominator is $x=4$. So, we have one vertical asmptote $x=4$.

A horizontal asymptote is a \boldsymbol{y}-value on a graph which a function approaches but does not actually reach.

The location of the horizontal asymptote is determined by looking at the degrees of the numerator (n) and denominator (m).

If $\boldsymbol{n}<\boldsymbol{m}$, the \boldsymbol{x}-axis, $\boldsymbol{y}=\mathbf{0}$ is the horizontal asymptote.
If $\boldsymbol{n}=\boldsymbol{m}$, then $\boldsymbol{y}=\boldsymbol{a n} / \boldsymbol{b m}$ is the horizontal asymptote. That is, the ratio of the leading coefficients of the numerator and denominator .

If $\boldsymbol{n}>\boldsymbol{m}$, there is no horizontal asymptote. However, if $\boldsymbol{n}=\boldsymbol{m}+\mathbf{1}$, there is an oblique or slant asymptote.

In our case $n=m=1, a=b=1$.
So, we have the horizontal asymptote $\boldsymbol{y}=1$.

