## Answer on Question \#46245 - Math - Statistics and Probability

Verify that $f(x, y)=x y e^{-x} e^{-y}, x>0, y>0$, satisfies the conditions necessary to be density for a continuous random variables x and y . Are X and Y independent? Find the correlation coefficient.

## Solution

In order for a function $f(x, y)$ to be a joint density it must satisfy $\int_{0}^{\infty} d x \int_{0}^{\infty} d y f(x, y)=1$ and $f(x, y) \geq 0$.

It is easy to see that $x y e^{-x} e^{-y} \geq 0$ when $x>0, y>0$.
We need to find

$$
I=\int_{0}^{\infty} d x \int_{0}^{\infty} d y x y e^{-x} e^{-y}=\int_{0}^{\infty} x e^{-x} d x \cdot \int_{0}^{\infty} y e^{-y} d y=I_{1} \cdot I_{2} .
$$

We can see that $I_{1}=I_{2}$ because we can obtain it one from another by transformations $x \leftrightarrow y$.
So $I=I_{1}^{2}$. Then

$$
I_{1}=\int_{0}^{\infty} x e^{-x} d x=\int_{0}^{\infty} x d\left(-e^{-x}\right)=-\left.e^{-x} x\right|_{0} ^{\infty}-\int_{0}^{\infty}\left(-e^{-x}\right) d x=0+\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=1 .
$$

Therefore $I=I_{1}^{2}=1$ and $f(x, y)$ satisfies the conditions necessary to be density for a continuous random variables x and y .

The marginal densities are given by

$$
\begin{aligned}
f_{X}(x)= & \int_{0}^{\infty} d y x y e^{-x} e^{-y}=x e^{-x} \int_{0}^{\infty} y e^{-y} d y=x e^{-x} \cdot 1=x e^{-x}, \\
f_{Y}(y)= & \int_{0}^{\infty} d x x y e^{-x} e^{-y}=y e^{-y} \int_{0}^{\infty} x e^{-x} d x=y e^{-y} \cdot 1=y e^{-y} . \\
& f_{X}(x) f_{Y}(y)=x e^{-x} y e^{-y}=x y e^{-x} e^{-y}=f(x, y) .
\end{aligned}
$$

That's why X and Y are independent.
The correlation coefficient $\rho(X, Y)$ defined by

$$
\rho(X, Y)=\frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}},
$$

where $\operatorname{Var}(X)$ is variance of a random variable $X, \operatorname{Var}(Y)$ is variance of a random variable $Y, \operatorname{Cov}(x, y)$ is he covariance of two random variables X and Y . But if X and Y are independent, then $\operatorname{Cov}(x, y)=0$. So

$$
\rho(X, Y)=0 .
$$

