Answer on Question \#46201 - Math - Calculus

Question:

Compute the Jacobian matrices using the chain rule for $\mathrm{z}=\mathrm{u}^{2}+\mathrm{v}^{2}$
where $u=2 x+7, v=3 x+y+7$.

Solution.

We see that z depends on u and v, but u and v, in turn, depend on x and y. It means that z depends on x and y too.

Hence we have Jacobian matrix $J=\frac{\partial(z)}{\partial(x, y)}=\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right)$.
Chain rule for the computing of this Jacobian matrix is the product of two matrices
$J=\frac{\partial(z)}{\partial(x, y)}=\frac{\partial(z)}{\partial(u, v)} \cdot \frac{\partial(u, v)}{\partial(x, y)}$
where Jacobian matrix
$\frac{\partial(u . v)}{\partial(x, y)}=\left(\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right)$
For given two functions
$u(x, y)=2 x+7$
$v(x, y)=3 x+y+7$
we obtain the Jacobian matrix
$\frac{\partial(u . v)}{\partial(x, y)}=\left(\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right)$
For the function $\quad \mathrm{z}=\mathrm{u}^{2}+\mathrm{v}^{2}$
we have $\frac{\partial(z)}{\partial(u, v)}=\left(\frac{\partial z}{\partial u}, \frac{\partial z}{\partial v}\right)=(2 u, 2 v)$
The product of two matrices is

$$
\begin{aligned}
J=\frac{\partial(z)}{\partial(u, v)} \cdot & \frac{\partial(u, v)}{\partial(x, y)}=(2 u, 2 v) \cdot\left(\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right)=(4 u+6 v, 2 v)= \\
& =(4(2 x+7)+6(3 x+y+7), 2(3 x+y+7))= \\
& =(26 x+6 y+70,6 x+2 y+14)
\end{aligned}
$$

Answer: Jacobian matrices
$J=\frac{\partial(z)}{\partial(u, v)} \cdot \frac{\partial(u, v)}{\partial(x, y)}=(26 x+6 y+70,6 x+2 y+14)$

