Answer on Question \#46192 - Math - Calculus

Question. Evaluate the limit:

$$
\lim _{x \rightarrow-\infty} \frac{\sin (1 / x)}{e^{1 / x}-1}
$$

Solution. Notice that

$$
\lim _{x \rightarrow-\infty} \sin (1 / x)=\sin (0)=0
$$

and

$$
\lim _{x \rightarrow-\infty}\left(e^{1 / x}-1\right)=e^{0}-1=0
$$

as well. Therefore we can use L'Hôpital's rule claiming, that if f and g are differentiable functinos at some point a, and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0,
$$

then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Since

$$
(\sin (1 / x))^{\prime}=\cos (1 / x) \cdot(1 / x)^{\prime}=\cos (1 / x) \cdot \frac{-1}{x^{2}}=-\frac{\cos (1 / x)}{x^{2}}
$$

and

$$
\left(e^{1 / x}-1\right)^{\prime}=e^{1 / x} \cdot(1 / x)^{\prime}=e^{1 / x} \cdot \frac{-1}{x^{2}}=-\frac{e^{1 / x}}{x^{2}}
$$

we obtain that

$$
\lim _{x \rightarrow-\infty} \frac{\sin (1 / x)}{e^{1 / x}-1}=\lim _{x \rightarrow-\infty} \frac{-\frac{\cos (1 / x)}{x^{2}}}{-\frac{e^{1 / x}}{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{\cos (1 / x)}{e^{1 / x}}=\frac{\cos 0}{e^{0}}=\frac{1}{1}=1 .
$$

Answer. $\lim _{x \rightarrow-\infty} \frac{\sin (1 / x)}{e^{1 / x}-1}=1$.

