Answer on Question \#46180 - Math - Geometry

Prove that in any triangle the line joining the mid-points of any two sides is parallel to the third side and half of its length.

Proof

Let $A D=B D$ and $A E=C E$. Prove that $D E \| B C$ and $D E=B C / 2$.

Extend $D E$ beyond E to F such that $D E=E F$. Since $A E=C E$, triangles $A D E$ and CEF are equal, making $C F|\mid A B$ (or CF||BD, which is the same) because, for the transversal $A C$, the alternating angles DAE and ECF are equal. Also, $C F=A D=B D$, such that $B D F C$ is a parallelogram. It follows that $B C=D F=2 \cdot D E$ which is what we set out to prove.

Conversely, let D be on $A B, E$ on $A C, D E \| B C$ and $D E=B C / 2$. Prove that $A D=D B$ andAE $=C E$.

This is so because the condition $D E \| B C$ makes triangles $A D E$ and $A B C$ similar, with implied proportion,

$$
A B / A D=A C / A E=B C / D E=2 .
$$

It thus follows that $A B$ is twice as long as $A D$ so that D is the midpoint of $A B$; similarly, E is the midpoint of AC.

