Problem.

The vectors $\Box(\rightarrow_T a)$ and $\Box(\rightarrow_T b)$ are non-collinear. Find for what value of x, the vectors $\Box(\rightarrow_T c) = (x-2) \Box(\rightarrow_T a) + \Box(\rightarrow_T b)$ and $\Box(\rightarrow_T d) = (2x+1) \Box(\rightarrow_T a) - \Box(\rightarrow_T b)$ are collinear.

Solution.

The vectors $\vec{c} = (x-2)\vec{a} + \vec{b}$ and $\vec{d} = (2x+1)\vec{a} - \vec{b}$ are colliner if there exists λ such that $\vec{c} = \lambda \vec{d}$. Then $(x-2)\vec{a} + \vec{b} = \lambda((2x+1)\vec{a} - \vec{b})$. Hence $((x-2) - \lambda(2x+1))\vec{a} = (-1-\lambda)\vec{b}$. The vectors \vec{a} and \vec{b} are non-collinear, so $(x-2) - \lambda(2x+1) = 0$ and $-1 - \lambda = 0$. Hence $\lambda = -1$ and (x-2) + (2x+1) = 0, 3x = 1. Therefore $x = \frac{1}{3}$. **Answer.** $x = \frac{1}{3}$.