Answer on Question \#46176 - Math - Vector Calculus

Problem.

Find the area of a parallelogram whose diagonals $2 \square\left(\rightarrow \top^{-m}\right) \square\left(\rightarrow \top^{n}\right)$ and $4 \square\left(\rightarrow \top^{m}\right)-5 \square\left(\rightarrow \top^{n}\right)$, where $\square\left(\rightarrow \top^{m}\right)$ and $\square\left(\rightarrow \top^{n}\right)$ are unit vectors forming an angle of 45°.

Solution:

The magnitude of the cross product

$$
(2 \vec{m}-\vec{n}) \times(4 \vec{m}-5 \vec{n})
$$

equal to the area of the parallelogram that this vectors span.

$$
\begin{array}{r}
(2 \vec{m}-\vec{n}) \times(4 \vec{m}-5 \vec{n})=2 \vec{m} \times 4 \vec{m}+2 \vec{m} \times(-5 \vec{n})+(-\vec{n}) \times 4 \vec{m}+(-\vec{n}) \times(-5 \vec{n}) \\
=-10(\vec{m} \times \vec{n})-4(\vec{n} \times \vec{m})=-10(\vec{m} \times \vec{n})+4(\vec{m} \times \vec{n})=-6(\vec{m} \times \vec{n})
\end{array}
$$

as cross product of collinear vectors equals $\overrightarrow{0}$ and $\vec{m} \times \vec{n}=-\vec{n} \times \vec{m}$.

$$
|-6(\vec{m} \times \vec{n})|=6|\vec{m} \times \vec{n}|=6|\vec{m}| \cdot|\vec{n}| \cdot \sin (\vec{m}, \vec{n})=6 \cdot 1 \cdot 1 \cdot \sin 45^{\circ}=\frac{6}{\sqrt{2}}=3 \sqrt{2}
$$

Answer: $3 \sqrt{2}$.

