## Question \#46172 - Math - Analytic Geometry

Find the vertices, eccentricity, foci and asymptotes of the hyperbola. Also trace it. Under what conditions on the line $x^{\wedge} 2 / 8-y^{\wedge} 2 / 4=1$ will be tangent to this hyperbola? Explain geometrically.

## Solution:

For the hyperbola with equation

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

We have:
a) the vertices in points $(-a, 0)$ and $(a, 0)$
b) eccentricity $\varepsilon$ is equal $\varepsilon=\frac{c}{a}$ where $c=\sqrt{a^{2}+b^{2}}$
c) the foci in points $(-\mathrm{c}, 0)$ and ( $\mathrm{c}, 0), c=\sqrt{a^{2}+b^{2}}$
d) asymptotes of the hyperbola: $y=\frac{b}{a} * x, y=-\frac{b}{a} * x$
e) the line passing through the point of hyperbola $\left(x_{0}, y_{0}\right)$ ) and which is tangent to the hyperbola has equation:

$$
\frac{x * x_{0},}{a^{2}}-\frac{y * y_{0,}}{b^{2}}=1
$$

So we have hyperbola with equation:

$$
\frac{x^{2}}{8}-\frac{y^{2}}{4}=1
$$

Therefor hyperbola has:
a) the vertices in points $(-2 \sqrt{2}, 0)$ and $(2 \sqrt{2}, 0)$
b) $c=\sqrt{a^{2}+b^{2}}=\sqrt{8+4}=\sqrt{12}=2 \sqrt{3}$, so eccentricity $\varepsilon$ is equal $\varepsilon=\frac{c}{a}=\frac{2 \sqrt{3}}{2 \sqrt{2}}=\sqrt{\frac{3}{2}}$
c) the foci in points $(-c 2 \sqrt{3}, 0)$ and $(2 \sqrt{3}, 0)$
d) asymptotes of the hyperbola: $y=\frac{2}{2 \sqrt{2}} * x=\frac{\sqrt{2}}{2} * x, y=-\frac{\sqrt{2}}{2} * x$.
e) the line passing through the any point hyperbola ( $x_{0}, y_{0}$ ) and which is tangent to the hyperbola has equation:

$$
\frac{x * x_{0},}{8}-\frac{y * y_{0}}{4}=1
$$

Example:pPoints $(4,2)$ and $(-4,2)$ belong to hyperbola. tangent to hyperbola in this points has equations:

$$
\begin{gathered}
\frac{x * 4}{8}-\frac{y * 2}{4}=1 \rightarrow \frac{x}{2}-\frac{y}{2}=1 \\
\frac{x * 4}{8}-\frac{y *(-2)}{4}=1 \rightarrow \frac{x}{2}+\frac{y}{2}=1
\end{gathered}
$$

Hyperbola was drawn using MAPLE 15:
implicitplot([(1/8)* $\left.x^{\wedge} 2-(1 / 4)^{*} y^{\wedge} 2=1, y=-x / \operatorname{sqrt}(2), y=x / \operatorname{sqrt}(2),(1 / 2)^{*} x-(1 / 2)^{*} y=1,(1 / 2) * x+(1 / 2)^{*} y=1\right], x=-20 .$.
 hyperbola", "asymptotes of a hyperbola", "tangent to hyperbola in point(4, 2)", "tangent to hyperbola in point(4,2)"], title = "Graph of hyperbola ", labels = ["x values", "y values"], labeldirections = ["horizontal", "vertical"],
thickness $=[2,1,1,1,1]$, linestyle $=[$ solid, longdash, longdash, solid, solid $]$, axis $=[$ gridlines $=[20$, thickness $=1$, colour $=$ green, majorlines $=1]$ )

Graph of hyperbola


