

### Answer on Question #46170 – Math – Analytic Geometry

**Question.** Obtain the equation of the plane  $Q$  passing through the line

$$L : \frac{x-2}{2} = -\frac{y+1}{1} = \frac{z-3}{4}$$

and which is perpendicular to the plane  $P : x + 2y + z = 4$ .

**Solution.** We have that

- the line  $L$  passes through a point  $A(2, -1, 3)$  in the direction of the vector  $l(2, -1, 4)$ ,
- the normal vector of the plane  $P$  has coordinates  $p(1, 2, 1)$ .

Let  $n(a, b, c)$  be normal vector of the plane  $Q$  passing through the line  $L$  and perpendicular to  $Q$ . Then  $Q$  passes through point  $A$ , whence its equation has the following form:

$$a(x-2) + b(y+1) + c(z-3) = 0.$$

Notice that  $n$  must be perpendicular to both vectors  $l(2, -1, 4)$  and  $p(1, 2, 1)$ , and therefore we can choose  $n$  to be the cross product of these vectors:

$$n = l \times p.$$

Thus

$$\begin{aligned} n = l \times p &= (2, -1, 4) \times (1, 2, 1) = \left( \begin{vmatrix} -1 & 4 \\ 2 & 1 \end{vmatrix}, \begin{vmatrix} 4 & 2 \\ 1 & 1 \end{vmatrix}, \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} \right) \\ &= (-1 \cdot 1 - 2 \cdot 4, 4 \cdot 1 - 1 \cdot 2, 2 \cdot 2 - 1 \cdot (-1)) = (-9, 2, 5). \end{aligned}$$

Hence  $Q$  has the following equation:

$$\begin{aligned} -9(x-2) + 2(y+1) + 5(z-3) &= 0 \\ -9x + 18 + 2y + 2 + 5z - 15 &= 0 \\ -9x + 2y + 5z + 5 &= 0. \end{aligned}$$

**Answer.**  $-9x + 2y + 5z + 5 = 0$ .