Answer on Question \#46170 - Math - Analytic Geometry

Question. Obtain the equation of the plane Q passing through the line

$$
L: \frac{x-2}{2}=-\frac{y+1}{1}=\frac{z-3}{4}
$$

and which is perpendicular to the plane $P: x+2 y+z=4$.
Solution. We have that

- the line L passes through a point $A(2,-1,3)$ in the direction of the vector $l(2,-1,4)$,
- the normal vector of the plane P has coordinates $p(1,2,1)$.

Let $n(a, b, c)$ be normal vector of the plane Q passing through the line L and perpendicular to Q. Then Q passes through point A, whence its equation has the following form:

$$
a(x-2)+b(y+1)+c(z-3)=0 .
$$

Notice that n must be perpendicular to both vectors $l(2,-1,4)$ and $p(1,2,1)$, and therefore we can choose n to be the cross product of these vectors:

$$
n=l \times p
$$

Thus

$$
\begin{aligned}
n=l \times p=(2,-1,4) \times & (1,2,1)=\left(\left|\begin{array}{cc}
-1 & 4 \\
2 & 1
\end{array}\right|,\left|\begin{array}{cc}
4 & 2 \\
1 & 1
\end{array}\right|,\left|\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right|\right) \\
& =(-1 \cdot 1-2 \cdot 4,4 \cdot 1-1 \cdot 2,2 \cdot 2-1 \cdot(-1))=(-9,2,5) .
\end{aligned}
$$

Hence Q has the following equation:

$$
\begin{gathered}
-9(x-2)+2(y+1)+5(z-3)=0 \\
-9 x+18+2 y+2+5 z-15=0 \\
-9 x+2 y+5 z+5=0 .
\end{gathered}
$$

Answer. $-9 x+2 y+5 z+5=0$.

