Answer on Question \#46166 - Math - Analytic Geometry

Question. Find the angle α between the lines

$$
L_{1}: x=1, \quad z-y=0
$$

and

$$
L_{2}: 2 x-y=-1, \quad z=1
$$

Solution. First we should find the vectors l_{1} and l_{2} parallel to these lines. The line L_{1} is the intersection of two planes $x=1$ and $z-y=0$. The normal vectors to these planes are respectively:

$$
n_{1}=(1,0,0), \quad n_{2}=(0,-1,1) .
$$

Therefore l_{1} is orthogonal to both n_{1} and n_{2}, and so it is parallel to the cross-product of n_{1} and n_{2}. Thus we can assume that

$$
\begin{aligned}
l_{1} & =n_{1} \times n_{2}=(1,0,0) \times(0,-1,1)=\left(\left|\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right|,\left|\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right|,\left|\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right|\right) \\
& =(0 \cdot 1-0 \cdot(-1), 0 \cdot 0-1 \cdot 1,1 \cdot(-1)-0 \cdot 0) \\
& =(0,-1-1) .
\end{aligned}
$$

Similarly, the line L_{2} is the intersection of two planes $2 x-y=-1$ and $z=1$. The normal vectors to these planes are respectively:

$$
p_{1}=(2,-1,0), \quad p_{2}=(0,0,1) .
$$

Therefore l_{2} can be taken to be the cross-product of p_{1} and p_{2} :

$$
\begin{aligned}
l_{2} & =p_{1} \times p_{2}=(2,-1,0) \times(0,0,1)=\left(\left|\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right|,\left|\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right|,\left|\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right|\right) \\
& =(-1 \cdot 1-0 \cdot 0,0 \cdot 0-1 \cdot 2,2 \cdot 0-0 \cdot(-1)) \\
& =(-1,-2,0) .
\end{aligned}
$$

The cosine of the angle α between l_{1} and l_{2} can be computed by the following formula:

$$
\cos \alpha=\frac{\left(l_{1}, l_{2}\right)}{\left|l_{1}\right| \cdot\left|l_{2}\right|} .
$$

We have that the scalar product $\left(l_{1}, l_{2}\right)$ is equal to the sum of products of the corresponding coordinates:

$$
\left(l_{1}, l_{2}\right)=0 \cdot(-1)+(-1) \cdot(-2)+(-1) \cdot 0=2,
$$

and the lengths of these vectors are

$$
\begin{aligned}
& \left|l_{1}\right|=\sqrt{0^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{2}, \\
& \left|l_{2}\right|=\sqrt{(-1)^{2}+(-2)^{2}+0^{2}}=\sqrt{5} .
\end{aligned}
$$

Hence

$$
\cos \alpha=\frac{\left(l_{1}, l_{2}\right)}{\left|l_{1}\right| \cdot\left|l_{2}\right|}=\frac{2}{\sqrt{2} \cdot \sqrt{5}}=\frac{\sqrt{2}}{\sqrt{5}}=\sqrt{2 / 5}=\sqrt{0.4} .
$$

Therefore

$$
\alpha=\arccos \sqrt{0.4} \approx \arccos (0.63246) \approx 50.768^{\circ} .
$$

Answer. $\alpha=\arccos \sqrt{0.4} \approx 50.768^{\circ}$.

