Problem.

For what value(s) of α , the conicoid x^2+y^2+ α z^2+2yz+xy+2y+z+3=0 has a unique centre? Give reason for your answer.

Solution.

Denoting the given expression by F(x, y, z) we get from

$$\frac{\partial F}{\partial x} = 0, \frac{\partial F}{\partial y} = 0, \frac{\partial F}{\partial z} = 0$$

2x + y = 0,

or

2y + 2z + x + 2 = 0, $2\alpha z + 2y + 1 = 0.$ Let $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 2 & 2\alpha \end{bmatrix}$ and $A' = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 2 & 2 \\ 0 & 2 & 2\alpha \end{bmatrix}$. The conicoid $x^2 + y^2 + \alpha z^2 + 2yz + xy + 2y + z + 3 = 0$ has a unique centre if rank A = rank A' = 3. $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 2 & 2\alpha \end{bmatrix} \sim \begin{bmatrix} 0 & -3 & -4 \\ 1 & 2 & 2 \\ 0 & 2 & 2\alpha \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 2 \\ 0 & -3 & -4 \\ 0 & 2 & 2\alpha \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 2 \\ 0 & -3 & -4 \\ 0 & 2 & 2\alpha \end{bmatrix}$ Hence rank A = 3 if $\alpha \neq \frac{4}{3}$. $A' = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 2 & 2 \\ 0 & 2 & 2\alpha & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & -3 & -4 & -4 \\ 1 & 2 & 2 & 2 \\ 0 & 2 & 2\alpha & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & -3 & -4 & -4 \\ 0 & 2 & 2\alpha & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & -3 & -4 & -4 \\ 0 & 2 & 2\alpha & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & -3 & -4 & -4 \\ 0 & 2 & 2\alpha & 1 \end{bmatrix}$ Hence rank A' = 3. Therefore conicoid has a unique centre if $\alpha \neq \frac{4}{3}$. Answer: $\alpha \neq \frac{4}{3}$.