Answer on Question \#46161 - Math - Statistics and Probability

Question. A box containing 8 light bulbs of which 3 are defective. A bulb is selected from the box and tested. If it is defective, another bulb is selected and tested until a nondefective bulb is chosen. Find the expected number and variance of bulbs chosen.

Solution. Let ξ be the number of bulbs chosen. Then
$P(\xi=1)=\frac{C_{5}^{1}}{C_{8}^{1}}=\frac{5!}{4!} \cdot \frac{7!}{8!}=\frac{5}{8} ;$
$P(\xi=2)=P($ the first is defective, the second is nonedefective $)=\frac{C_{3}^{1}}{C_{8}^{1}} \cdot \frac{C_{5}^{1}}{C_{7}^{1}}=$
$=\frac{3!}{2!} \cdot \frac{7!}{8!} \cdot \frac{5!}{4!} \cdot \frac{6!}{7!}=\frac{3}{8} \cdot \frac{5}{7}=\frac{15}{56} ;$
$P(\xi=3)=P($ the first and the second are defective the third is nondefective $)=$
$=\frac{C_{3}^{1}}{C_{8}^{1}} \cdot \frac{C_{2}^{1}}{C_{7}^{1}} \cdot \frac{C_{5}^{1}}{C_{6}^{1}}=\frac{3}{8} \cdot \frac{2}{7} \cdot \frac{5}{6}=\frac{5}{56} ;$
$P(\xi=4)=P($ the first, the second and the third are defective $)=\frac{C_{3}^{1}}{C_{8}^{1}} \cdot \frac{C_{2}^{1}}{C_{7}^{1}} \cdot \frac{C_{1}^{1}}{C_{6}^{1}}=$
$=\frac{3}{8} \cdot \frac{2}{7} \cdot \frac{1}{6}=\frac{1}{56}$.
Therefore ξ has the next distribution:

Value k of ξ	1	2	3	4
Probability of $\xi=k$	$\frac{5}{8}$	$\frac{15}{56}$	$\frac{5}{56}$	$\frac{1}{56}$

The expected number of bulbs chosen is $E \xi=1 \cdot \frac{5}{8}+2 \cdot \frac{15}{56}+3 \cdot \frac{5}{56}+4 \cdot \frac{1}{56}=\frac{3}{2}$.
Calculate
$E \xi^{2}=1 \cdot \frac{5}{8}+4 \cdot \frac{15}{56}+9 \cdot \frac{5}{56}+16 \cdot \frac{1}{56}=\frac{39}{14} ;$
The variance of bulbs chosen is
$\operatorname{Var} \xi=E \xi^{2}-(E \xi)^{2}=\frac{39}{14}-\frac{9}{4}=\frac{15}{28}$.
Answer. $E \xi=\frac{3}{2}, \operatorname{Var} \xi=\frac{15}{28}$.

